1/(x^2-x-2)-x/(x^2-5x+6)

Simple and best practice solution for 1/(x^2-x-2)-x/(x^2-5x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/(x^2-x-2)-x/(x^2-5x+6) equation:


D( x )

x^2-(5*x)+6 = 0

x^2-x-2 = 0

x^2-(5*x)+6 = 0

x^2-(5*x)+6 = 0

x^2-5*x+6 = 0

x^2-5*x+6 = 0

DELTA = (-5)^2-(1*4*6)

DELTA = 1

DELTA > 0

x = (1^(1/2)+5)/(1*2) or x = (5-1^(1/2))/(1*2)

x = 3 or x = 2

x^2-x-2 = 0

x^2-x-2 = 0

x^2-x-2 = 0

DELTA = (-1)^2-(-2*1*4)

DELTA = 9

DELTA > 0

x = (9^(1/2)+1)/(1*2) or x = (1-9^(1/2))/(1*2)

x = 2 or x = -1

x in (-oo:-1) U (-1:2) U (2:3) U (3:+oo)

1/(x^2-x-2)-(x/(x^2-(5*x)+6)) = 0

1/(x^2-x-2)-(x/(x^2-5*x+6)) = 0

1/(x^2-x-2)+(-1*x)/(x^2-5*x+6) = 0

x^2-x-2 = 0

x^2-x-2 = 0

x^2-x-2 = 0

DELTA = (-1)^2-(-2*1*4)

DELTA = 9

DELTA > 0

x = (9^(1/2)+1)/(1*2) or x = (1-9^(1/2))/(1*2)

x = 2 or x = -1

(x+1)*(x-2) = 0

x^2-5*x+6 = 0

x^2-5*x+6 = 0

x^2-5*x+6 = 0

DELTA = (-5)^2-(1*4*6)

DELTA = 1

DELTA > 0

x = (1^(1/2)+5)/(1*2) or x = (5-1^(1/2))/(1*2)

x = 3 or x = 2

(x-2)*(x-3) = 0

1/((x+1)*(x-2))+(-1*x)/((x-2)*(x-3)) = 0

1/((x+1)*(x-2))+(-1*x*(x+1))/((x+1)*(x-2)) = 0

1-1*x*(x+1) = 0

1-x^2-x = 0

1-x^2-x = 0

1-x^2-x = 0

DELTA = (-1)^2-(-1*1*4)

DELTA = 5

DELTA > 0

x = (5^(1/2)+1)/(-1*2) or x = (1-5^(1/2))/(-1*2)

x = (5^(1/2)+1)/(-2) or x = (1-5^(1/2))/(-2)

(x-((5^(1/2)+1)/(-2)))*(x-((1-5^(1/2))/(-2))) = 0

((x-((5^(1/2)+1)/(-2)))*(x-((1-5^(1/2))/(-2))))/((x+1)*(x-2)) = 0

((x-((5^(1/2)+1)/(-2)))*(x-((1-5^(1/2))/(-2))))/((x+1)*(x-2)) = 0 // * (x+1)*(x-2)

(x-((5^(1/2)+1)/(-2)))*(x-((1-5^(1/2))/(-2))) = 0

( x-((1-5^(1/2))/(-2)) )

x-((1-5^(1/2))/(-2)) = 0 // + (1-5^(1/2))/(-2)

x = (1-5^(1/2))/(-2)

( x-((5^(1/2)+1)/(-2)) )

x-((5^(1/2)+1)/(-2)) = 0 // + (5^(1/2)+1)/(-2)

x = (5^(1/2)+1)/(-2)

x in { (1-5^(1/2))/(-2), (5^(1/2)+1)/(-2) }

See similar equations:

| y=-6-10 | | 6(7-z)/5=-z | | 1/x+1/(x+21)=1/14 | | 3x+9=3(x+1) | | -2r-7=-4+4r-8r | | .10(y-5)+.04y=.18y-.3 | | x^2-4x=1085 | | 18-2(11+5)/2+2 | | x^2-4x=480 | | x^3/2500 | | 4-2(5+5)/4+4 | | -(5y+1)-(-4y-4)=-3 | | 6x+4x+2x=180 | | 4x+2x+6x=180 | | -3y+1/4=13/4 | | -10.4-a=15.6 | | (5x+9)(2x+8)= | | 5(2z-4)=9(z-5) | | g(x)=log(3)(2x-1)-3 | | 2/5x-6=-2 | | (2x+1)+(x-1)+3x=180 | | [-7+(-5)]+[4+(-1)]= | | (15x^3+2x^2-75)/(3x-5) | | 1/(3*x^2/3)*1/(6*x^5/6) | | w+3/9=5/8 | | x^2-12x-9180=0 | | 9x+30=75 | | -2/6=x+2/5 | | x^2-12x+9180=0 | | (2x^2+3x-4)/(x+4) | | y=1/3(6)+2 | | x+32/-6=-6 |

Equations solver categories